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“Data movement, rather than computational processing, will be the 
constrained resource at exascale.” – Dongarra et al. 2011.	





Examples	
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Streamlines and pathlines 
in nuclear engineering 

Stream surfaces	


in meteorology 

FTLE	


in climate modeling 

Morse-Smale complex	


in combustion 

Voronoi and Delaunay tessellation	


in cosmology 

Ptychography	


in materials science 



Communication Design Patterns	



You do this yourself	


Can use serial libraries such as OSUFlow, Qhull, VTK 
(don’t have to start from scratch) 

DIY handles this 
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Keys:	


•  Separate custom application code from reusable communication	


•  Recognize that diverse applications use a common set of design patterns.	


	





A Data Movement Library for HPC Data Analysis	
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Ad hoc	

 Structured	



void ParallelAlgorithm() {	


   …	


   MPI_Send();	


   …	


   MPI_Recv();	


   …	


   MPI_Barrier();	


   …	


   MPI_File_write();	


}	



void ParallelAlgorithm() {	


   …	


   foreach(&LocalAlgorithm);	


   exchange();	


   reduce();	


   write_blocks();	


}	


void LocalAlgorithm() {	


   …	


}	



Analysis Algorithm
Merge-reduce Swap-reduce

Iterative Nearest Neighbor

OS / Runtime

Application
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Application
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DIY	





Basic Concepts	
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Block Parallelism	
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Blocks are units of work and communication; blocks exchange information with 
each other using DIY’s communication algorithms. DIY manages block placement 
in MPI processes and memory/storage. This allows for flexible, high performance 
programs that are easy to write and debug.	



8 processes 4 processes 1 process



Partition Data Into 
Blocks	
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The block is the basic 
unit of data 
decomposition. Original 
dataset is decomposed 
into generic subsets 
called blocks, and 
associated analysis items 
live in the same blocks. 
Blocks don’t have to be 
“blocky.”  Any 
subdivision of data (eg., a 
set of graph nodes, a 
group of particles, etc.) is 
a block.	



Structured Grid

AMR Grid

Unstructured Mesh

Graph



Multiple Regular Decompositions	
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1.  Decomposition 

can be a regular 
grid of blocks or a 
k-d tree.	



2.  For a regular grid, 
constraints on 
numbers of 
blocks can be 
imposed to get 
pencil or slab 
shapes.	



3.  Multiple 
decompositions 
can co-exist.	





Neighborhood Links	
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- Limited-range communication	


- Allow arbitrary groupings	



- Distributed, local data structure and 
knowledge of other blocks (not 
master-slave global knowledge)	



Two examples of 3 out of a total of 25 neighborhoodsExamples of 3 neighborhoods in a regular grid, unstructured mesh, and graph.	





Different Neighborhood Communication Patterns	
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DIY provides point to point and different varieties of collectives within a 
neighborhood via its enqueue/exchange/dequeue mechanism. 	
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How to enqueue items 
for neighbor exchange	



•  DIY offers several 
options	



•  Send to a particular 
neighbor or neighbors, 
send to all nearby 
neighbors, send to all 
neighbors	



•  Support for periodic 
boundary conditions	





Global 
Communication 

Patterns	
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Swap-reduce	



Merge-reduce	





// initialization	


Master                          master(world, num_threads, mem_blocks, ...); 	


ContiguousAssigner       assigner(world.size(), tot_blocks); 	


decompose(dim, world.rank(), domain, assigner, master);	


	


// compute, neighbor exchange	


master.foreach(&foo);	


master.exchange();	


	


// reduction	


RegularSwapPartners(dim, tot_blocks, k); 	


reduce(master, assigner, partners, &foo);	


	


// callback function for each block	


void foo(void* b, const Proxy& cp, void* aux) 	


{	


    for (size_t i = 0; i < in.size(); i++) 	


        cp.dequeue(cp.link()->target(i), incoming_data); 	


    // do work on incoming data	


    for (size_t i = 0; i < out.size(); i++) 	


        cp.enqueue(cp.link()->target(i), outgoing_data[i]);	


}	



Example Usage	
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Performance Matters���
���

Benchmark Results and Full Applications	
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Neighbor Exchange Benchmark	
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We stress tested our neighbor exchange algorithm for a large number of 
small (20-byte) items exchanged.	



Conclusion: Linear complexity with total data size even though the data are divided 
into many small items. The user does not need to worry about aggregating data.	





Global Reduction Benchmarks	
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Communication time only for our merge algorithm compared with MPI's 
reduction algorithm (left) and our swap algorithm compared with MPI's reduce-
scatter algorithm (right).	
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Automatic Out-of-Core Algorithms	



In- and out-of core performance of 
Delaunay tessellation.	



In- and out-of-core performance 
of distance field computation for 
watershed segmentation. 	



No source code changes required to switch between in-core and out-of-core.	
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Automatic Multithreaded Algorithms	



Automatic threading of Voronoi 
tessellation.	



Comparison between manual and 
automatic threading of density 
estimation.	



No source code changes required to switch between single and multithreaded.	





Peterka et al., High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation. SC14. 

Computational Geometry in Cosmology	
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Strong and weak scaling for up 
to 20483 synthetic particles and 
up to 128K processes 
(excluding I/O) shows up to 
90% strong scaling and up to 
98% weak scaling.	



With Dmitriy Morozov and Carolyn Phillips  [github.com/diatomic/tess2]	





Load Balancing in Cosmology	
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Cosmology simulations have 
severe load imbalance. 
Tessellating meshes using a k-d 
tree instead of regular grid 
results in dramatically improved 
performance.	



 [github.com/diatomic/tess2]	


Courtesy Dmitriy Morozov 

Morozov and Peterka, Efficient Delaunay Tessellation Through K-D Tree Decomposition, to appear SC16. 



 Above: Strong scaling of estimating the density of 
5123 synthetic particles onto grids of various sizes.	



Left: comparison of tessellation-based and CIC density	


20	



Tessellation-based density estimation 
is parameter free, shape free, and 
automatically adaptive	



Density Estimation in Cosmology	


With Hadrien Croubois, Nan Li, Steve Rangel, and Franck Cappello 

Peterka et al., Self-Adaptive Density Estimation, SIAM SISC 2016. 

 [github.com/diatomic/tess2]	





Recap���
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Block Parallelism	



Block abstraction for parallelizing data analysis allows one to:	


	



• Decompose data into blocks	



• Assign blocks to processing elements	


• Have several decompositions at once	



• Overload blocks, migrate blocks between processing elements	



• Communicate between blocks	



• Migrate blocks in and out of core	


• Thread blocks with finer-grained processing elements	



All made possible by choosing blocks as the parallel abstraction	



	



Think Blocks!	
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Software: DIY	
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Tom Peterka, ANL	


Dmitriy Morozov, LBNL	


github.com/diatomic/diy2	



	



DIY is a programming model and runtime for HPC block-parallel data analytics.	


•  Block parallelism	


•  Flexible domain decomposition and assignment to resources	



•  Efficient reusable communication patterns	



•  Automatic dual in- and out-of-core execution	



•  Automatic block threading	





References	



24	



DIY Papers	


•  Peterka, Ross, Kendall, Gyulassy, Pascucci, Shen, Lee, Chaudhuri: Scalable Parallel Building 

Blocks for Custom Data Analysis. LDAV 2011.	


•  Peterka, Ross: Versatile Communication Algorithms for Data Analysis. EuroMPI 2012.	


•  Morozov, Peterka: Block-Parallel Data Analysis with DIY2. Submitted to LDAV 2016.	



Selected DIY Application Papers	


•  Morozov, Peterka: Efficient Delaunay Tessellation through K-D Tree Decomposition. To 

appear SC16.	


•  Peterka, Croubois, Li, Rangel, Cappello: Self-Adaptive Density Estimation of Particle Data. 

SIAM Journal on Scientific Computing SISC Special Section on CSE 2015. 	


•  Peterka, Morozov, Phillips: High-Performance Computation of Distributed-Memory 

Parallel 3D Voronoi and Delaunay Tessellation. SC14.	


•  Lu, Shen, Peterka: Scalable Computation of Stream Surfaces on Large Scale Vector Fields. 

SC14.	


•  Nashed, Vine, Peterka, Deng, Ross, Jacobsen: Parallel Ptychographic Reconstruction. Optics 

Express 2014.	


•  Gyulassy, Peterka, Pascucci, Ross: The Parallel Computation of Morse-Smale Complexes. 

IPDPS 2012.	


•  Nouanesengsy, Lee, Lu, Shen, Peterka: Parallel Particle Advection and FTLE Computation 

for Time-Varying Flow Fields. SC12. 	


•  Chaudhuri, A., Lee-T.-Y., Zhou, B., Wang, C., Xu, T., Shen, H.-W., Peterka, T., Chiang, Y.-J.: 

Scalable Computation of Distributions from Large Scale Data Sets. LDAV 2012.	



	





Tom Peterka	



tpeterka@mcs.anl.gov	



http://www.mcs.anl.gov/~tpeterka	



Mathematics and Computer Science Division	



Facilities	


Argonne Leadership Computing Facility (ALCF)	



Oak Ridge National Center for Computational Sciences (NCCS)	


National Energy Research Scientific Computing Center (NERSC)	



	


Funding	



DOE SDMAV Exascale Initiative	


DOE SciDAC SDAV Institute	



	


People	



Dmitriy Morozov (LBNL)	



Acknowledgments 

https://github.com/diatomic/diy2	


	


	


	



EDF-INRIA Seminar	


June 24, 2016	




